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1. Introduction 

In this a r t i c  Le we study the controllability of non- l inear  s y s t e m s  

of the fo rm 

dx - -  - F(x, u).  
d t  

Our  objective is to  es tabl ish c r i t e r i a  in t e r m s  of F and its de- - 
rivatives a t  a point - x which will  give qualitative information about the 

sets attainable from - x .  The  study is based p r imar i ly  on the work of 

Chow [4]  and Lobry  [16], although it i s  similar in its approach to works 

by o the r  ac tho r s  in . that  it makes  sys temat ic  use  of differential  geometry  

( f o r  instance,  see Hermann [8], [ 9 ] ,  Haynes & H e r m e s  [6], Brocket t  

[2], etc.). 

The  state v a r i a b l e x  is assumed  to t a k e  values in a n  a r b i t r s r y  

real analytic manifold M, r a t h e r  than in R Y  W e  chose this general izat ion 
ry - 
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because it c r e a t e s  no  essent ia l  new difficult ies while, on the o ther  hand, 

i t  allows for cer ta in  applications which a r e  not commonly treated in 

control theory. 

r e su l t s  can be specialized to obtain m o r e  detailed controllabil i ty 

criteria. Control problems on Lie groups w e r e  first considered by 

R .  W. Brockett  in [2], and will  be treated in a for thcoming paper  by the 

authors.  

For instance,  when - M is a Lie group, then the present 

Most of the r ecen t  s tudies  on controllability of non- l inear  s y s t e m s  

have essent ia l ly  dea l t  with symmet r i c  s y s t e m s ,  i. e. , s y s t e m s  of the 

r *orm (*) with the proper ty  tha t  F ( x ,  -u) = -F(x, u) (Hermann [ 9 ] ,  Haynes 

and H e r m e s  [6], Lobry  [16]). A s  r emarked  by Lobry  in [16], the  con- 

s iderat ion of symmet r i c  s y s t e m s  often excludes interest ing s i tuat ions 

a r i s i n g  from mechanics.  In these cases the s y s t e m  is of the form 

- dx = A(x)  t H(x)' u. 
d t  

A notable exception is the work  by Lobry [17]. Lobry  s ta ted  
3 (and proved f o r  the c a s e  of two vector fields i n E  ) the r e s u l t  fo r  non- 

symmet r i c  s y s t e m s  that appears h e r e  a s  T h e o r e m  3. 1. 

Our r e su l t s  apply to non-symmetr ic  sys t ems .  We obtain gome 

gene ra l  information about the geometr ic  s t r u c t u r e  

sets  showing that they "practically" a r e  submanifolds ( see T h e o r e m s  

4 .4  and 4. 5 for  the p rec i se  s ta tements) .  

of the  attainable 

T h i s  information yields a 

complete answer  to the problem of deciding when the sets attainable 

from a poi: - x have a non-empty inter ior .  

involve purely a lgebra ic  manipulations of - F and its der iva t ives  (of all 

o r d e r s )  a t  the point x (see the Remark  below). 

The  criteria obtained 
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c/ 
In  par t icu lar ,  o u r  r e su l t s  contain those of Kucera  [14], In this 

connection we obse rve  that o u r  proofs  a r e  of interest even for the c a s e  

t rea ted  by Kucera  ( s e e  Sussman [21]), 

W e  have c,mitted the consideration of non-autonomous sys tems:  

t h e y  can be t reated analogously by the f ami l i a r  procedure  of reduction 

to an  autonomous sys t em (i.  e,  , b y  consider ing the s t a t e  var iable  to be 

defined in M x E). - 
The organization of the a r t i c l e  is as  follows: in section 2 we intro-  

duce notations and basic  concepts; i n  addition, we quote some  well-known 

bas ic  r e su l t s  which will be used la ter .  

results in differential  geometr ic  terminology. 

In sect ion 3 we prove our  main  

In section 4,  we appiy these  r e su l t s  to control  sys tems.  W e  

der ive  the algebraic  c r i t e r i a  mentioned above (Coro l l a r i e s  4. 6 and 4. 7)  

and we prove two "global resul ts :  we show that, for  a l a rge  c l a s s  of 

manifolds,  accessibi l i ty  (i. e. the proper ty  that,  for  any given - x, the 

set of points attainable f r o m  - x has  a nonempty inter ior)  impl ies  s t rong  

accessibi l i ty  (i. e. that, for  any given - x and any given fixed posit ive - t ,  

the set of points attainable f r o m  x at time - t has  a nonempty in te r ior ) .  

a l s o  show that,  fo r  a s t i l l  l a r g e r  c l a s s ,  including the Eucl idean spaces ,  

con t r o 1 lab i 1 i t  y 'imp li e s s t r o ng a c c e s s i b i 1 it y , 

W e  

Finally,  section 5 contains examples.  W e  show how our  r e su l t s  

can be used to de r ive  the c la s s i ca l  controllabil i ty c r i t e r i a  for the 

system 

-- dx - A x  t B u  . 
d t  
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We a l s o  de r ive  the r e su l t s  of Kuzera  and indicate some  general izat ions.  

Remark ,  An assumption that i d  made  throughout the a r t i c l e  is 

tha t  E is a n  analytic frtnction of x. T h i s  guarantees  that all the inform.- 

ation about the s y s t e m  is actually contained in  F and i ts  der ivat ives  (of 

all o r d e r s )  a t  a given point 5. The  analyticity asgumption cannot be 

re laxed without destroying the theory (cf. Example 5. 3). 

Another assumption tha t  we  make  is thsL+ the t r a j ec to r i e s  of the 

s y s t e m  are  everywhere cfined. A S  opposed to the previous one, this  

assumpt ion  is not e s sen t i a l  (except  for  the "global" Theorems  4. 9 and 

4. 10). W e  use  it, however, because it considerably s implif ies  al l  the 

proofs. 

2, P r e l i m i n a r i e s  

W e  sha l l  assume that  the reader is famiLiar with the fundamental  

A 11 the definitions and basic  concepts notions of different ia l  geometry.  

utilized in this paper can  be found in s tandard  books, ( fo r  instance,  

~ 1 ,  [31, [71, ~ 3 1  and ~191) .  

T h e  following notations wil l  be used throughout: 

R-- the set of real numbers .  

N Rn- -n-dimensional - Euclidean space, 

M - -  t h e  tangent space to the manifold - M at the point - x. 

TM- -the tangent bundle of the manifold - M. 

V(M)--the set of all analytic vector  fields on the analyt ic  

ILV 

-X 

- 

manifold - M. 

W e  will  r e g a r d  V(M) - -  as a Lie  a lgebra  o v e r  the r e a l s .  

For any X and - Y in - -  V(M),  we will denote the Lie product by - 
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[ X ,  Y ]  = X Y  - Y X ) .  Al l  the manifolds w i l l  be a s sumed  to - -  [X - -  , y](i. e. 

be paracompact ,  Reca l l  that a submanifold of a paracompact  manifold 

is paraconipact. A l s o ,  a connected paracompact  manifold is a co(iiltab1e 

union of compact se t s .  These  facts  imply (cf. Lobry  1161, p 5 8 9 ) :  

LEMMA 2, 2 .  Let  - M be a (paracompact)  manifold of dimension - n. 

Le t  S be a k-dimensional connected submanifold 0f .M.  If k c  n, then 

the  set of points of  S has a n  empty in te r ior  i n  - M. 

- _. d -  

A subse t  D of V(M) will  be called involutive i f ,  whenever N and Y 
e -- - - 

belong to  - D ,  then [ X , Y ]  - -  a l so  belongs to D, A subalgebra of y(A4) is an  

involutive subspace.  Let  - D V(M). L- An integra1 manifold of - D is a 

connected submanifold S of E. with the property that S 

every  x 8 S, where  D(x) = {E (x) : X, c: D], 

= %'(D(x)) for 
X 

and where  Y ( D ( x ) )  is the 

subspace of M 

about integral  manifolds: 

spanned by D(x). W e  state the followillg %sic  r e su l t s  
X 

LEMMA 2. 2 .  L e t  L D be a n  involutive subse t  of - -  V(M),  and let 

- -  x E, M. Then is contained in  a unique maximal  in tegra l  manifoId of 

- D ( h e r e  "maximal" means "maxima 1 with r e spec t  to inclusion"). 

Th i s  r e su l t  is c l a s s i ca l  i f  the dimension of &?(D(x)) is the s a m e  for  

each x cM(Cheval1ey [3]). For a proof  i n  the genera l  case, see Lobry 

WI. 
If D C V(M), we  denote the sma l l e s t  subaIgebra - V(h?) .- -.v).ich 

contains - D b y y ( D ) ,  - and the max ima l  in tegra l  manilold r): .. )) thrDugh 

x by I(D,x). Recall that ,  if L X is a vector  field on - M, ther, .. _ -  a n  -- -L - 
integral  curve  of i f  a i s  a smooth mapping from a closed in te rva l  I, 

I CJ, into M such that - - 
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DEFINITION 2, 3. If D -- is a subse t  of Y(M), then a n  integra! 

c u r v e  of D is a mapping a f r o m  a real  interval  [t, t ' ]  into - M such that 

t h e r e  ex is t  t = t < c 

with the property that the restriction of a t o  [t 

curve  of X.  for  each  i = 1 , 2 , .  . . , b, 
fact: 

< . . . < tk = t , and e lements  X 1,. I .  'Xk ofD 0 1  

, t . ]  is a n  integral  i- 1 1 

W e  halre the following e lementary  
1 

LEM.IMA 2.4. Let - D c V(M). - 
curve  of D, and let a(t) = x fo r  some t e [t , t 1. - 0 1  
f o r  all s 6 [to, tl]. 

Froof. 

cu rve  of - -  X ,  X E: - D. 

le t  J(S) be the set of a l l  s c [t , t 1 such tha t  a ( s )  e S. 

existence and uniquefiess of solutions of ord inary  different ia l  equations 

Let a: [to, t l ]  -M - be a n  integral  

Then  a(s)  g I (3 ,  x) 

It is sufficient to cons ider  the  cas t  when ais a n  integral  

For each maximal integral  mar.ifo1d S o f Z ( D ) ,  L 

F r o m  the ! x a l  - -  0 1  

it follows that, i f  

[ tO'tJ  c JG). 

maximal integral  

maximal integral  

s e J(S), then t h e r e  exists - r > 0 such  that ( e - r ,  s+r) 0 
Thus ,  - -  J(S) is open relative to [to, tl]. 

manifolds of X ( D )  - are  disjoint,  we  hr.ve that,  C Q r  some 

manifold 2, [to, t l ]  C J( 3. But &( t) c: I(D, x); therefore ,  

Since the 

our  proof is complete, 

Chow's t heo rem provides  a partial converse  to the above lemma. 

If D CV(M),  then - D is s y m m e t r i c  if, whenever -. X sD, c- -X - also belongs 

to Q. W e  can  now state Chow's t heo rem as follows: 

LEMMA 2, 5. Let D C V(M) be s y m m e t r i c ,  and let x c M. Then ,  

f o r  eve ry  y E: I(D, x) t he re  exists a n  integral  c u r v e  a:  [C,  T ]  + - -  M of D, 

with T z 0,  such that a(0) = x and a(T)  = y. 
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In other words,  every point of the  maximal  integral  manifold of 

, f ( D )  - through - x an  be reached in positive time by following a n  integral  

curve of D having x as its initial point. - - 
DEFINITION 2. 6. Le t  D C V(M), and let x 6 hl. If T - > 0, then, - -  - -- 

for a n y y  E, y is - D-reachable f rom x a t  time - T if  t h e r e  ex is t s  a n  in- 

tegra l  curve a. of - D defined on [OPT] such that ~ ( 0 )  = x and a(T)  = y. The  

s e t  of all - D-reachable points f r o m  - x at t ime T is denoted by Lx(D, T ) .  

The union of L (D, t) for 0 5 t < 

by Lx(D) (respect ively L (D,T)) .  

( respect ively fo r  0 5 t =i T) is denoted 
X 

cv -X 

3. Integrability of Fami l ies  of Analytic Vector F ie lds  

As an introduction to  the general  situation, we f i r s t  considered the 

c a s e  when D is a symmet r i c  subset  of - V(M). 

utilized to obtain a necessa ry  and Sufficient condition for  L (D) to  have 

Chow's t heo rem can  be - 
H X  

a non-empty in t s r io r  in  M .  - Let  - n = d im M - = d im T ( D )  0 -  (x). Then 

4D, x) is an n-diAmensional submanifold of M ,  and hence  is open in  M. - - -- - - 
By Chow's theorem we have that  L (D) = 4 0 , ~ ) .  W e  conclude tha t  L (D) 

is >pen in - M. 

d i m Z ( D )  (x) < n , then I(D),x)  is a connected submanifold of - M of dimension 

l e s s  than n; then f r o m  Lemma 2. 1 it follows d i rec t ly  tha t  I (D ,x )  has a n  

empty in te r ior  in  M. Since L ( 3 ) C Y D , x ) ,  L ( D )  a l s o  has  an empty inter ior .  

Thus,  if D is symmetr ic ,  a necessa ry  nad sufficient condition for  L (D) 

to have a non-empty in te r ior  in  Y M is that  Jim S(D) (x )  - -  = d im - M. Moreover ,  

H X  -X 

Conversely (and without invoking the s y m m e t r y  of - D )  if 

e - -  - -  - 
-- c - 

N X  - 
3 -dX 

this condition is necessa ry  even in  the non-symmetr ic  c a s e  (Lobry  [16]). 

W e  sha l l  show that it is alsG sufficient. F o r  th i s  purpose we shall 

assume that the elements  of - D are complete--recal l  that a vectc r field 

X is coTplete  the integral  curves  of X are defined foz a l l  real h - -. - 
(cf. [13], p. 13). 
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THEOREM 3. 1. Let - M be an  - n-dimensional analytic manifold,  

and l e t  e D c V ( M )  -- be a family of complete vec tor  fields, 

and sufficient condition f o r  L,(D) to have a non-empty in t e r io r  in - M is 

A n e c e s s a r y  

N 

tha t  dim.y’(D)(x) d -  = - n. Moreover ,  if this  condition is sat isf ied,  then for 

each T > 0, the in te r ior  of L (D ,  T) is dense  i n  L ( D ,  T)  ( thus ,  in 

par t icu lar ,  L ( D , T )  h a s  a non-empty ifiterior). 

- N X  N X  

N X  

Proof .  W e  a l ready  know that the condition of the theo rem is 

necessary .  

second statement.  

So we a s s u m e  tha t  dirnaTD)(x) = n, and we prove the 

C lea r ly ,  this will imply that $(D) has a non-empty 

- -  

.y 

in te r ior  i n  M. 

Let D = { X , , .  . . ,Xk]. 
p a r a m e t e r  group of diffeomophisms induced by X.( i. e. , t + gi( t, y) is 

the in tegra l  cu rve  of Xi which p a s s e s  t h r o u g h 1  at d t = 0; the fact that  

it is defined for all real t 

( t l , . .  . , t  ) is a n  e lement  of R is a na tura l  number t = 

( i l , .  . . , i 

Without l o s s  of generali ty we  can  a s s u m e  that  D is finite. - - 
For each i = 1.2 , .  . . , k ,  let b . ( t , * )  be the one- 

1 

1 

follows f r o m  the  completeness of X.). If - m 1 - 
m , and i = 

N m cy N 

) is a n  - m-tuple of na tura l  numbers  between 1 and - k, then we  m 

be the family of vec tor  fields obtained from D by adjoining the vector  - 
-Xk to L). fields -X1,. . . , Then,  i- D is symmetric, and d i m X ( t D )  (x) = n. - 4 -  -- 

From Chow’s theo rem we  conclude that  L (t D) is open in - M .  

the elements of L ( t D )  a re  exactly those e lements  of M which a r e  of 

the .form 0 .  ( t ,  x) for some m , some m-tuple  i , and some t 6 R . F o r  

each i 

C lea r ly ,  
N X -  - 

nax -- - 
m 

N N N  - - 1 -  
Iv 

and for  each  na tura l  number N > 0, let A ( i ,  N )  be the set of 
O H -  N ’  - 

t . . . t 1 t I). m Since A ( i ,  N) is the image of the compact  set - -  - 
Et : 11: 11 5 N) under the continuous mapping t 

-t 4 ( t  , x) ,  we have 
N N Y 

N 
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that  A( i  , N) is compact. Also,  s ince  L ( t D) i s  the union of the s e t s  - Y -  cux - -  
A ( i ,  N)  ( t a k e n  over  m,  i and - N ) ,  it follows from the category theo rem that ,  

N 
- n d -  

- 

fo r  some i and N,  the set A( i ,  N )  h a s  a non-empty in t e r io r  in - M. For 
- r y  - - N 

such a n  i , let F : R m  --+ M be defined by F(t) = c i ( t , x ) .  cu 

analytic mappingwhose image  h a s  a non-empty in te r ior  in - M. 

Then  - F is an  
cu rv cv 

Y 

B y  Sard’s 

theorem (Sternberg  [IS]), the differential  d F  of F at w t mus t  have rank 

n for s o m e  t R . Since d F  depends analytically on t , it follows - N - t ‘y 

that  the set !J 

Let 52 = R 

t -  
N m 

Ccl # ’ m  
= {i: t : R , rank dF < n )  has  a n  empty inter ior .  

N N -t - 
cy m # m . 
W e  now show t h a t y  is i n  the 

- s2 . Then  s2 is open and dense  in R N 
ry 

L e t  T > O ,  and le t  y 2 L ( D , T ) .  
-X - 

c l o s u r e  of the in te r ior  of L ( D , T ) .  It is clearly sufficient to a s s u m e  

that  y e L (D,  t), where  0 5 t < T (for each  point of L (D,  T) is i n  the 

c losure  of 0 {L ( D , t )  : 0 5 t <  T 1): L e t  y = Q . ( s  ,x) where  j = ( j l , .  . . , j p ) ,  

ryx 

X -X 

X J -  cy 

N 

> O  ,..., s > O ,  a n d s l t  ... t s  = t .  L e t U  - 
{ t : t l  > 0 , .  . . , t > 0 1 .  

m 

1 P P 
s = ( s  1 ’ .  . . , sp” s 
ry 

{L : 11 t 11 < T - t 

contains the or iginal  Oof R 

- U is open, and its c losu re  
m N rv 

. Since d F  h a s  rank n a t  each  point t s - U,  
- N  t cv 

h) 

it follows that F (U)  is V - i s  the 

image  of - d  F(U) under the diffeomorphism - z + +.  ( s  . 21: t he re fo re ,  - V is 

open in  - M and, m o r e o v e r ,  eve ry  e lement  of - V is - D-reachable  f r o m  - x 

open. Let V = { e .  ( s ,  F(t)) : ry t c U 1. 
J -  - - -  
ru 

3 “ -  
hr 

at  time \I w s 11 + 
t ha t  t l , .  . . , t m 

to the c losure  of V .  Let { t 

converges  to 0 .  Then  

IIi 11 = t t 11: \ \  < T ( h e r e  we  use  essent ia l ly  the fac t  

are non-negative). It r e m a i n s  to  be shown that  y belongs 

be a sequence of e lements  of - U which 
-q 

N 

lim $ . ( s ,  F(t q)) = f . (s,F(O)) = 5 ( 2 , ~ )  = V. 
J -  ry J -  hr 9 

T h i s  completes  the proof of the theorem. 
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W e  now wa..it t;, state a n  analogous theo rem for the sets L ( D ,  T) .  

For this  purpose,  we shal l  introduce a Lie subalgebra z o ( D )  of .F(D)  
X 

which will be related to these  sets in  the same way asX(D)  is re la ted  to 

the sets L$ (C,T). T h e  aim of tk,e following in fo rma l  remarks is to 
cv a. 

motivate o u r  definition of g ( D ) .  

to be positrve. 

cons is t s  of hree vector  fields X1,X, and X3. Let @ O z  and 8 be the 

correspondi1,g one-parameter  groups. 

W e  sha l l  ignore the fact  that  time h a s  0 
Moreover ,  we  shal l  a s s u m e ,  for s implici ty ,  tha t  - D 

4 3 

It is clear t h a t a D )  h a s  the 

! ,llowing "geometr ic  interpretation": S(D)(x) is, for  each  x c M, the 

set of all limiting direct ions of c u r v e s  through - x that are ent i re ly  c n -  

tained ir i (D). Thus ,  fo r  instance,  i f  i = 1 , 2 , 3 ,  then all the points in  

the cu rve  t -. 0 .( t, x) a r e  attainable from - x (recall that  we are forgett ing 

about positivity), and th i s  is reflected i n  t h e  fact that X.(x)  belongs to 

3(D)(x). Sim;lar'.y, the c u r v e s  a,.(t) = Q.(-t ,g . ( - t ,B.(t ,@.(t ,x))))are also 

contained in  L (D). 

Lie bracket (cf. Helgason [7], p. 9 7 ) ,  the  l imiting d i rec t ion  of a.. 
13 

is [X.,X.](x) (after a r ep . r ame t r i za t ion ) .  Thus ,  it is c l e a r  why [ X . , X . ]  
1 3  f 3  

belongs to3(D).  Obviously, a similar argument  works  for the brackets 

- x  

1 

1 

11 1 3 1 3  

By the wel l  known geometr ic  interpretat ion of the -X 

of higher  order. The geometr ica l  meaning  of f lD)  is now obvious. 

0 
If 9$D) is going to play the desired role it is clear tha t  3 (D)(x) 

will  have to be the set of all l imiting d i r e c t i o n s  of c u r v e s  v through x 

such that v (t) is "attainable from x in z e r o  units of time" for  a!l t .  

Notice that the curves c ..(t) of the preceding pa rag raph  have th i s  

property.  

- - 
1J 

Indeed, alt) 238.) he reached  from - x by "moving forward" in  

time 2t  units, and then "backward" another  2t  units, T h i s  shows tha t  
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the vector  fields [X . ,  X.] a r e  reasonable  candidates f o r  membersh ip  in  

.fo(D). A s i m i l a r  a rgument  applies to higher  o r d e r  b racke t s ,  such a s  

[ X . , [ X . , X k ] ] ,  etc. On the o ther  hand, a vector field such a s  X .  should 
1 J  1 

- not be included i n X  (D) b y  definition, because  we do not know whether 0 

the points a .(t, x) ,  t =/ 0 ,  cpn be reached from x i n  0 units of t ime  (but ,  

of cour se ,  it may happen that some  X.  will  belong to 3 ( D )  anyhow; 

for  instance,  we could have X 

1 J  

- 1  

1 0 

= [X2,X3]). However,  the vector  fields 1 

X.  - X. will  have to be included, because  (X, -X. ) (X)  is the l imiting 
J .- 1 J  1 

direct ion of t h e  cu rve  t 

generated by the differences X. - X .  will  have to be included in .fl (D). 

Th i s  subspace can a l s o  be defined a s  the set of all l i nea r  combinations 

@ .( - t, Qi ( t ,  x)). In o ther  words ,  the subspace 
J 

1 J 0 

AIXl t x,X,tX 3X3 such that  X 1  t Xz + 1 = 0 ( tha t  all the  d i f fe rences  

X .  - X .  a r e  l inear  combinations of this type is trivial; converse ly ,  if 

Y = h X t 

( -  X I  - A,) Xg, i. e . ,  Y = X l(X1- X3) t X,(X, - X3)) ,  

1 J 
X -*.X3X3 w i t h l l  t A 2  t x 3  = 0, then Y = X I X l  t x,x, t 1 1  2 2  

W e  conclude that the  reasonable  candidates for membersh ip  in 

Zo(D) are: (i) all the b racke t s  [X. ,X. ] ,  [X., [X X,]], etc. , and (ii) a l l  

the s u m s  XIXl t X t X3X3, where  EA = 0. Notice that  the subset 

generated by ( i)  is c lear ly  the der ived a lgebra  of 3 ( D )  (by definition, 

1 3  1 j '  

2 2  i 

t h e  der ived algebra of a L ie  a lgebra  L is the subalgebra - L' of - L generated 

by a l l  the bracke ts  [X,Y] ,  X 8 L, Y g L; i t  is easy to check that L' 

is i n  fact  a n  ideal of - L; cf. Helgason [7], p. 133. - 
W e  now r e t u r n  to o..r fo rma l  development. L e t S i D )  denote the 

der ived algebra ofX(D). Motivated by the preivious remarks,  w e  define 

Y (D) to be the  s e t  of a l l  sums X t Y ,  where  X is a l inear  combination 
0 
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D 
1- 

22 1 . X .  with X1 ,... , X  g D  and ZX = 0, 
1 1  P i i=l  

and where  Y c d - ' ( D ) .  

One shows eas i ly  t h a t 3 ( D )  is the set of a l l  vector  fields of the form 

It is obvious that 3 (D) is a n  ideal of X(D) .  0 

P 

i=l 
X.X. + Y  
1 1  

where  X1, .  . . , X belong to D, Y belongs to  3 '(I)), and X l , .  .~. , X 
P P 

a re  

reals (but X 1  + . . . t 1 
mediately that  3 (D) is a subspace of g ( D )  of codimension z e r o  o r  one. The  

codimension will  be z e r o  i f  and only if  son-exC D belongs to  s o ( D )  ( in  

which case eve ry  X 8 D will belong to Zo(D)). Simi lar ly  for each  x M, 

need not be zero) .  F r o m  this  it follows im- 
P 

0 

i f  k = d imS(D)  (x), then the dimension ofXO(D) (x) will  e i the r  be k or 

k- 1. 

W e  sha l l  a l s o  be in te res ted  in  assoc ia t ing  t o  each  D C V(M),  a 

set 

space to  M X R  at a point (x, r) (x 8 M, r e R )  is identified, in a na tura l  

way, t o  the  d i r ec t  s u m  Mx @ R 

vector  field X @Y 6 V(MXR ) Fv 

D* of vec tor  f ie lds  in  the  manifold M X  R .  Recal l  that  the  tangent 
N 

- 
. If x s V ( M ) ,  Y g V(R) , we define the - r  U 

rv 

The  set D* is defined to be the set of all vector fields IC@-", where  at  
X D, and where  - is the "canonical" vector field on R (( zf) (r) = at N 

df (r)). Using the  identity [XOX', Y @Yt ] = [ X , Y ]  0 

shows eas i ly  that 3 ' ( D q  is the set of all vector  f ie lds  of the f o r m  X @ 0 ,  

a b 

[ X ' , Y f ] ,  one x 
cy 
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w h e r e  X crlj l (D) and 0 is the z e r o  vec tor  field. T h e r e f o r e ,  Z ( D * )  is the 
N 

set of vector  fields of the fo rm 

P a c h . ( X . @  1 1  x) + Y O 0  h. 

i = l  

, X belong to D, Y r ,$' (D) ,  and h l , .  . . , A  a r e  s c a l a r s .  
l ' . ' .  P P 

where  X 

THEOREM 3 . 2 .  Let  L M be an  analytic - n-dimensional manifold,  and 

le t  D be a family of complete  analytic y. zctor  f ie lds  on  M. L e t  x E M. and 

let T > O .  Then  Lx(D,T)  h a s  a non-empty in t e r io r  i n  M i f  and only i f  dim$(D) 

(x) = n. Moreover ,  in th i s  ca se ,  the in te r ior  of L ( D , T )  is dense in  L ( D , T ) ,  

e - -  
0 - - 

X X 

Proof .  The  ma in  idea i n  this proof is to modify o u r  problem so that 

we  can "keep t rack"  of the time e lapsed  while we move along an in tegra l  

c u r \ ?  of D. W e  sha l l  then apply Theorem 3. 1 to  the modified sys tem.  We - 
sha l l  work  i n  the manifold M X R . A s  i n  the preceding paragraphs ,  we 

cy - 
a let the family D* of vector  fields on M X R 

X c L). 

in tegra l  cu rves  &of - D such that a(0) = x, and in tegra l  c u r v e s  $(D*) - such 

that B(0) = (x, 0). T h i s  cor respondence  is given by assigning to each  curve  

a the cu rve  t -(a(t), t). 

C L  

be defined b y  D* = [X@ : 
- c y  

It is clear that t he re  is a one-to-one correspondence between 

It follows that y E: L (D,  T )  i f  and only i f  ( y ,  T) 

W e  show that L ( D , T )  h a s  a non-empty in t e r io r  i n  - M 

A s s u m e  

Y, 

(D*,T).  
X - P, 0) 

(D*) h a s  2 non-empty in t e r io r  i n  M X R . 
N 

i f  and only i f  L - - ( X , O )  

that  L ( D , T )  h a s  a non-empty in t e r io r  i n  - M, and le t  4 V be a non-empty 

open set such that V C  L (D,T) .  

X 

Let X - -  6 D ,  and l e t  @ be the one-para-  
X 

meter group of diffeomorphisms of - M generated by - X. 

mapping F : V X R  + M X R  defined by F(v, t) = ( $  ( t ,  v ) , T  4- t ) .  

Consider  the 

It is 
N % 

immediate  that the differential  of F has  rank - r. t 1 everywhere.  The re fo re  

F m a p s  open sets onto open sets. - 
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Since F ( V X ( O , C O ) ) C  - L (x, 0) (Z.b) ,  we conclude that L - (x ,  0) (D*) has a non- 

empty inter ior  in M X R .  
cu 

To prove the converse,  assume t ha t  - L (x, 0) (D*) has a non-empty 

inter ior  i n  MXR , By Theorem 3, 1, for each t with 0 < t 4 T, L 
- c v  - - w(x, 0) 

(D*, t )  has  a non-empty inter ior  i n  M X R .  - . .N  Let  -L V be a non-empty open 

subset of M, and l e t  W be a non-empty open subset  of R such that - -  VXW c 
N - 

(D*,t). L e t  s e W. Since V X  { s ]  L (D*, t), w e  conclude - 4% 0) - . -  - (x, 0) 
that  V C  L (D,  s). 

meter group on M. Denote the mapping y 4 Q (T-s, y) by - G. 

- G(VJ is open. Since - 4  G(V) is contained i n  Lx(D,T), if follows that 

LJD,T)  has  a non-empty interior.  

Let  - -  X D, and let b be the  corresponding one-para- 
X 

Then 

W e  conclude from T h e o r e m  3. 1 that L ( D , T )  has a nonempty 
X 

in te r ior  if and only if dim S(D*)(x ,  0) = n t 1. To complete the  proof of 

the first pa f t  of our  s ta tement ,  we mus t  show that th i s  last condition holds 

if and only i f  d imZ0(D)(x)  = q. 

ceding this  proof, the fact that eve ry  X* G S(D*) can  be expressed as 

W e  recall, f r o m  the  remarks pre- 

- 
b P 

( # )  X* = 22 1. ( X . 0  bt ) t Y@O where  X1,.. . ,X belong to  - D 
P 1 1  cv i= I 

and Y ek?'(D). Now assume that  dim 5 (D*)(x, 0) = n -t 1. Let 

v 

where X* G$(D*)~ Then formula (#) holds for sui table  Xi, Xi, Y. 

There fo re  

Mx. Then (v, 0) m u s t  belong to  S(D*)(x ,  0), so that  (v, 0) = X*(x, 0), 

v = (2:X.X. -t Y) (x), 
1 1  

and 
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The  last equality implies that 22 1 

belongs to  S,(D). Thus  1’ Xo(D)(x). We have shown that M ~ % ( D ) ( x ) .  

The re fo re  

Let v e Mx. Then v E: .T,(D)(x), so tha t  

= 0, so that  the vector  field CX .X. t Y i 1 1  

x *  
the d imemion  of S (D)(x) is - n. Conversely,  let d im Z0(D)(x)  = n. 0 

v = (EX .x. t Y) (x) , 
1 1  

where  the  X.  belong t o  D, Y €$(D) and = 0. The re fo re ,  
1 i 

b (v,O) = ( ( Z A . X .  1 1  + Y )  @(ZX.) 1 X ) ( X , O )  

This shows that  (v, 0) belongs to  S(D*) (x, 0). P i c k  a n  X s D .  

b Then X o  bt (x, 0) belongs t o  D*(x, 0) by definition, and  X 

(x, 0) belongs to  3 (D*)(x, 0) by the previous r emarks .  

(0  , 
contains all the vec tors  (v, 0), v 

Therefore$(D*)(x, 0) = ( M X  R ) 

as stated. 

@ 0 

There fo re  

M 

b (0)) belongs t o  9 (D*)(x, 0). We have thus shown tha t  X(D*)(x, 0) 
N 

a Mx, and a l s o  the vec tor  ( 0  , - (0)). 

so that d im 3 (D*)(x, 0) = n t 1 
- a t  

- ( X I  0)’ 

W e  now prove the  second pa r t  of the theorem. A s  we remarked 

earlier, t he re  is no loss of general i ty  in a s suming  that - D i s  finite. 

y c Lx(D, T). 

y = ig 

t .  > O  fo r  i = 1, ... , m  and 1; t I\ = T .  

lim s = 0. Since our  condition fo r  L ( D , T )  t o  have a non-empty 

in t e r io r  is independent of T ,  we conclude tha t  L (D, t) has  a non-empty 

in t e r io r  for all - t > 0. 

which belongs t o  the  in t e r io r  of L (D, sk), 

Let 

Using the notations cf the  proof of T h e o r e m  3. 1, let 

m ( t , x ) ,  where  i = ( i l , .  .. , i  ), and where  t 8 R is such  that  

Le t  [sk) < ( 0 , t  ) be such  that 

N N m - n d  
N 

1 N m 

k X k + m  

X - 
k In pa r t i cu la r ,  for each  .I k > 0, t h e r e  exists x 

X w k  m- 1’ 
- Let t - ( t l , .  . . , t 
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t - sk), and le t  y = B i  (Lk,xk) .  F o r  each k > O ,  y belongs to L ( D , T ) ;  m k k X - 
ry 

since Q is a diffeomorphism, y is the in te r ior  of L ( D ,  T). A l s o ,  x - -x  

a s  k --rw because D is f ini te  and s 

i k X k 

is continuous i n  both 
h) 

-c 0. Since Q i 
N 

k - 
variables, and si,ise t t ,  we  have that  y - y ,  and o u r  theorem is proved. 

'vk ry k 

T h e  r e su l t s  of the previous theo rems  can  be utilized to obtain inform- 

ation about the sets L X ( D , T )  and Lx(D,T) ,  even  when d i m D ) ( x )  - -  < - n. 
'v 

THEOREM 3. 3.  Let D C V(M) be a family of complete  vector fie!ds. 

Then,  for each T > 3, the  set L ( D , T )  is contained in I (D,x) .  Morzover ,  

in the topology of I (D,x) ,  the in t e r io r  of L ( D , T )  is dense  in L(D,T) .  

Lx(D, T) h a s  a non-empty in te r ior  in I(D, x) i f  and only i f  d i m s  (D(x)) = 

dim*D)(x) and,  in this c a s e ,  the in t e r io r  of Lx(I),T) is dense  in L (D ,  T). 

N X  

,x N 

0 

X 

Proof .  If X T ( D ) ,  then - X is tangent to I(D,x). Thus ,  t h e r e  is a -- - 
well-defined r e s t r i c t ion  X f# of X to I(D,x).  

r e s t r i c t ions  of e l emen t s  of D by D#. 

that  N(D)# - =X(D#).  - Analogously,we have that  S 0 ( D ) #  = X0(D#). If 

we now apply the previous theo rems  to the family D# of vector  fields in 

W e  denote the set of all such - - -  - - 
Since [x, - Yj# = [X#, - -  Y#], it follows 

I(D,x) ,  we  ge t  a l l  the  conclusions of the theorem. 

COROLLARY 3. 4. Let - S be a maximal in tegra l  manifold of 3 ( D ) .  - 
Then  the dimension of So(D)(x) - -  is the same f o r  a l l  x e S. 

Proof. If d i W D )  (x) = k then, for each  - d  x e S ,  the dimension of - 
so( D)(x) is e i ther  - k o r  - k- 1. W e  show that, i f  d i m  x0( D)(y) = k, 1 for  

some  - -  x 6 S, then dim s o ( D )  (y) = k-1. for - all y €5 .  
empty,  open ( re la t ive  to S) Yubset of L (D) ( th i s  is poss ib le  by Theorem 

3. 3). 

w e r e  not the c a s e ,  then necessa r i ly  d imgo(b) (y)  = k. 

have a non-empty interior in - S for all - t > 0 .  

' et Q be a non- 

N X  - 
W e  first show that,  if y € 5 2 ,  then dim s,(D)(y)  = k - 1 .  If this 

Then  L ( D , t )  would 
Y 

T h i s  would 
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imply that L ( D , t )  has  a non-empty in te r ior  in L S. 

this  is impossible.  

is connected, and C? is open in d S, we ha;e that d im SO(D)(y)  = k- 1 f o r  

But by o u r  assumption 
X 

Thus,  d i m  d o ( D ) ( y )  = L k - 1  fo r  a l l 1  6 !J. Si;ice - S 

all  v c S ; therefore ,  our statement is proved. 
A d  

We now proceed to  study the c a s e  when dim ZO(D)(x)  = d i m  

X(D)(x) - 1. W e  begin by proving some  pre l iminary  lemmas .  

LEMMA 3. 5. Let D - C”(M) - -  be a family of p-mplete vector  fielils. 

If X D ,  let { +  ] be the one-parameter  group generated by - X. Then,  t 
for eve ry  x E M, and eve ry  t 

onto zo( D) ( ih  t( x) ). 

Proof. 

- -  
R the different ia l  dg maps  x O ( D ) ( x )  t - -  - c y  

W e  first show that for  eve ry  y c M t h e r e  is a n  r > 0 such - - 
that ,  i f  v cXo(D)(y) ,  then dq ,(v) E eFo(D)(@t(y)) for  a l l  - t with It1 c r. 

It is sufficient to show that for everyy E M and eve ry  v e 3  (D)(y) 

t h e r e  exists a n  r > 0 such  that  d Q  ,(VI e JTO(D)(@ (y))  f o r  a l l  t with 

It1 < r. 

Y E 3 (D),  then a n  easy  computa?iqn shows that t h e r e  exists a neighbor- 

hood of t = 0 such tha t  dpt(v)  = .Ci=l 00 

0 - 
t .- 

Lety  8 - M, and let v E go (D)(y). If v = Y(y) f o r  some  

0 

,E$- [xii), Y ]  (m,(y))t i  for  a l l  
1 .  - 

t in  this  neighborhood, where  [X(@), Y] = Y, and [X‘”), Y ]  = [X, [X (n-  1) - 
Y]] for  n = 1,2 , .  . . Since each  term of the  above beries belongs to  

3 O(D)(Q ,(y)), we have tha t  d #  (v) c: 3 (D)(dt(y)) f o r  - t sufficiently small. 
t 0 

A l s o ,  for such - f: we have that  dBt (ZoiD)(y)) = z0(D)(Ipt(y)); th i s  is so 

because  dO 

(Corol la ry  3.4). 

d#,(X0(D)(x)) = Z0(D)(cpt(x)) is both open and  closed. 

we can  conclude that  ib ( v )  X,,(D)((b (v))  for all t. T h i s  completes  

o u r  proof. 

is bne-to-one, and dim Xo(D)(y)  = d i m  Z0(D)(cht(y)) t 
It follows eas i ly  that the set of a l l  - t such that  

If v c X0(D)(x), 

t t 
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A s  we remarked  e a r l i e r ,  ,Fo(D) - is a subalgebra of .F(D). 

denote the maximal  integral  manifold of So( - 3) through x u by IO(D, x). 

If X 6 D then, by the previous lemma,  9 (I  (0,~)) is a maxim21 integral  

manifold of Z0( D). 

LEMMA 3 . 6 .  

W e  will 

- -  t o  

Le t  - D C V(M) -- be a family of complete vecto- fields. 

Let  X and Y, be e lements  of D, and let  [ @ ] and [ y  ] be their  correspond-  

ing one-parameter  groups, 1’ 

.7 (D)  then, fo r  any  t E R ,  if 

t 

- t - t  

- S is a A;;aximal integral  r-anifold of 

(S) = y t  is). 0 Lv 

Proof ,  Let X ,  Y, !$ t ,  \y and - S sat isfy the conditions of the iemr.ia. -- 
Let  P be the maximal  integral  manifold o f X ( D )  which contains - S. 

d im - P = dim - S, then - -  S = F, and !$,(S) = S = y t ( S ) .  

d im (P) -1. 

whenever I t I e r. 

a t  (x, 0). 

this mapping, r e s t r i c t ed  to  52 X ( -  6, 6; is a diffeornorphism onto a n  open 

subset  SI# of - P . If 1 E: SI#, le t  - e(y) and fJy) he such that @f(y)( s(y)) = y. 

Clear ly ,  - f is analytic i n  E#, and f(y) = o if  9nc1 .k-tiy i f y  E: SI . 
X f 

integral  manif l ld  of S0(D). The vector fieid Y - X is tangent to IJ (0) 

and, sinc:e f i s  .constant on @ ‘Q), i t  fo1lows that Yf 

SI# is the union of the s e t s  $60) over  -6 < t < 6, we concitJde that 

Yf z X f  

fined on - r c t < r ,  is contained in  n#. 

f (@-t(  yt(x)). 

We have that q’ = (Yf) (vt(x)) - 1 2~ 0 and, s ince g(0) = 0 it follows tha,t 

g zz 0 on ( - r , r ) .  

for a l l  t c (or, r) ,  Hence, i f  I t  1 c r ,  the manifokd 

If 

A s s u m e  that d im S = k = 

W e  f i r s t  show that t h e r e  is an  r > 0 such that F (SI = y ( S )  

The mapping (8,  t) -. 4 ( 8 )  has rank - k t 1 

t t - 
Let  x e S .  t - -  

Let  S2 be a neighborhood of - x in - S, and let 6 >  0 be such that - 

M r  . . ave r ,  

1 in  sZ#. For every  - t such  that It I < 5 ,  the ne?*, 6 t [ Q !  is nn 

t e - -  
Xf on @,(sl). Since t ‘  - 

1 on SI#. Let  r > O  be such that the curve t -. Q-,!V~[X)), de- 

L e t  g( t) = In  addition, let r <  6. 

Then 4 is analytic in  ( - r ,  rj,  and moreover  g(t) = f(yt(x)) - t. 

But this means  that #- t ( y t (X) )  E: 52 
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0 ( y  (S)) in te rsec ts  S. Sir-ce a (y (S)) is a maximal  integral  manifold 

of .9-c(D), it follows that Q-,(v ,(S)) = S, and tnat yt(bJ = St(S). 

be the se t  of a l l  t such that O 7  (S) = Y (S) fo r  a l l  T i n  a neighborhood of 

- t .  

easily from the preceding argument  that * A is closed. 

- t  t - t  t 

Le t  - A 

7 - 
Then - A is obviously open, and we have shown that -’ 6 - A .  It follows 

There fo re ,  

ip ( S )  = y (S) for a l l  r ea l  - t , and our  proof is complete. t t 
Acccrding to  the above lemma,  i f  D C V ( M )  L d  an2 if - x -’ M then 

the manifold @,.(I ( D , x ) )  depends only on 4 t , and not on the par t icu lar  

choicz of X . W e  shal l  defiote this  manifold by I ( D , x ) .  It is c l e a r  

that I ( D , x )  could be defined as the maximal integral  manifold of 

Z (D) passing through y, where y is a n  a r b i t r a r y  point of L (D ,  t). 

b o  
t 
0 - 

t 
0 

3 X 

Finally, we prove a factorization property of maps  that will be 

utilized seve ra l  times. 

LEMMA 3.7. Let  u E be a locally convex vector space,  Jet 

K c E ,  and let C: 5e a convex dense subset  of - K. Let  F : K - I(D, x) - - - 
be a continuous mapping such that _F(C) is contained in  a maximal 

integral  manifold - S of Xo(Q).  

as a mapping f r o m  - K into - S ,  is continuous. 

Then_F(K) is contained i n  S, and - F , 

Proof.  If din,  S = d im I(D, x), then S = I(D, x), 

follows trivially. The re fo re ,  w e  sha l l  a s s u m  that d im S = d im I(D,x)  - 1. 

and the  conclusion 

Let k e K ,  le t  X e D, iLnd let  {a  } be the one-parameter  group t - -  L -  

induced by - X. 

neighborhood R q f  F(k) in Io(D,_F(k)), and a positive number 8 ,  such 

that the mapping ( s ,  t) r* 0 (s) is a diffeomorphism of R X ( -  6 ,  a )  onto 
a n  open su5set  S2# of I(D,x).  

- k such that - -  F ( U n K )  - C 52#. 

Then, a s  in  the proof of Lemma 3.6, we can find a 

- - -  
t 

Le t  - U be a n  open convex neighborhoo? of 

For each .L t E. (-6, a ) ,  the set  4 t  (0) is a n  
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integral  manifold of 5 (D); therefore ,  i f  4 ( R )  i n t e r sec t s  S ,  then 

4,(!2) is  contained and open in I S. 

It follows that S n R #  is the union of the se t s  f i t (sZ) ,  t 

a r e  mutually disjoint and, s ince d S is separable ,  it foliows that  A is a t  

most  countable. 

( s , t )  + 4 4 s ) .  

is continuous. 

0 t 
Le t  A = [t : 1: I e 6 , Q J R )  c S ]  , 

A.  These  sets 
I - -  

Let  y * ( s ( y ) ,  f (y))  be the inverse  in  R # of the m a p  

Then the f u n c t i o n s  defined in - -  Ul? K by g(m) = f(F(m)) 

Since F ( U  n C) C S r\ R#,  we conclude t h a t g ( m )  - E A 

for all m 8 U fl C. But A is at mos t  countable, and U fl  - C is convex; - -  - - 
t he re fo re  g is constant on U (7 C. Since U r\ C is dense i n  U l7 K ,  we - -  - -  - -  
have that  g is constant on - -  Uf\ K. Obviously g(k) = 0, and the re fo re  

g(m) = 0 for  all m e U f l  K ;  thus -- F(m) e 52. This  shows that R con- - - -  
tains a point of - S; hence QCS, - and - -  F(k) e S. - This  proves  the  first 

p a r t  of the lemma. 

To prove the second part, le t  {k ] C K converge to  k. Since F 

Since 

- - n 

is coniinuous, F ( k  ) -. F(k). 

- s is continuous, s(F(kn))  converges to  s (F(k) )  in - S ,  

therefore  s ( F ( k  )) = F(kn). Similarly,  s(F(k))  = F(k). We have thus 

shown that  F ( k  ) converges to  F(k) in S,and o u r  proof is complete. 

For large - n, s(F( kn)) is defined. n 

But g(kn) = 0 ,  and 

n 

n 

Remark  3.8. It i p  c l e a r  that the preceding l emma is valid under 

weaker assumptions about - C and - K. F o r  instance,  it is sufficient t o  

assume that,  for  eve ry  - -  k g K and for  every  neighborhood - U of - k, 
t h e r e  ex is t s  a neighborhood V of such that V C U and V C is 

connected. 

.-. - - - - 

We now state and prove the theo rem towards which we have been 

aiming. 
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THEOREM 3. 9. Le t  - D C - -  V(M) be a set of complete  vec tor  

t 
X 0 

fields,  and let x M . Then,  for each T > 0,  L ( D , T )  c I ( D , x )  ar.d, 

moreove r ,  the in t e r io r  of L ( D ,  T)( re l a t ive  t o  I ( D ,  x)) is dense  i n  L ( D ,  T )  
X 0 X 

d - 
t 

(and is, in par t icu lar ,  non-empty). 

Proof. If d i m  &,(D)(x) = d im ~ ( G ) ( x ) ;  then we have from Corol la ry  

3. 4 tha t  X0(D)(y) = 3 ( D ) ( y )  f o r  a l l  y 

10(D,x) and o u r  conclusion follows f r o m  Theorem 3. 3. 

dim Zo(D)(x) = k = d imX(D)(x )  - 1. 

i f  a is a n  in tegra l  c u r v e  of - D such  that  a(0) = x, then %(T) E: 10(D,x);  

hence, L (D ,T)  C I (D,x). 

I (D ,x ) .  T h e r e f o r e ,  I (D ,x )  = 

A s s u m e  that 

0 
t 

It is clezr f r o m  Lemma 3. 6 that,  

T 

T 
X 0 

W e  now show that,  if y 6 L (D,T) ,  t h e n y  is the  limit of points 
X 

which belong to the  in t e r io r  of L (D,T).  

let y = #.(T ,x),  where  \\TI\ = T ,  and T. > O  for i = 1 , 2 , .  . . , m  ( the  

notations h e r e  are the same as  in  the  proof of T h e o r e m  3. 1) .  

Let D = {X,,  . . . , Xk] and X 

1 -  cy 1 
N 

Let 

j of in tegers  between 1 and - k such tha t  t he  
N 

rank of t + $  

subse t  Roof R < 
Let ( t  

T 

we l e t y  = Q .  (T 

y is i n  the in t e r io r  gf L (D ,T)  re la t ive  to I (D,x) .  Since t h e  

mapping z 'ei(T 

(t , X) is equal to dim Z(D) (x )  for all L t in a n  open dense  
rv j -  

s ] n  R. 
S Let R '  = ( t  : t 8 R , t. > 0 f o r  i = 1,. . . , 

.y U N  cv 1 

] C R be a sequence that converges  to 0, and let T = ( T I , .  . . , - P  -P 
T - \kpll ). W e  can a s s u m e  that  I\ t I\ T for  all  p > 0. If 

,x)), then y c L (D,T). W e  next show thzt 

m-1' m PI m 

X 1 cv p~ Q j E p  P T p w  

I \  t I '  

N 3 -P X -P 

? X c 
z) is a diffeomorphisxr f r o m  Io -P ( 0 , ~ )  onto - P' 

N T IC (D, x), it suffices to show that  Ip .( t 

Let V 

t e V 

defined by F (5 = 0 . ( t  ,x). 

, - -8 i n  the in t e r io r  of L ( D ,  \It 11). 
S = 1 t : t g R , t l  > 0, .  . , ,ts>O, 11 t \I = !\ip\\]. Clea r ly ,  if 

then m j  (t ,x) c Lx(D, 11 t 1). L e t  F : V + I  "tdl ) ( D , x )  be 

- H  - Lv P 

P' N - P  P P O  hr 

W e  show that  F is analytic. Since F 
P-  3 -  P P 



-82- 

is analytic as  a m a p  from V into I(D, x), it suf f ices  to show that it is 

continuous. But th i s  follows f r o m  the previous lemma, because V is 
P 

P 
convex. T h e  rank of t - @ . ( t  , X) is equa l  t9 di&(D)(x) at t = t Since 

N 3 -  N "P' 
S -  

V is a submanifold of R of codimension 1, it follows that  the  rank  of 

F at t is equal  t o  the  dimension of J -p ( 0 , ~ ) .  Thus ,  F ( V  ) con- 

ta ins  a neighborhood of F (t ) in I IlLPl\ (D,x) .  It follows tha t  

(D. ( t  

;e conclude that  y is in t e r io r  to  Lx(D,T) in I (D,x). 

to be shown that y converges to y in  I (D,x) .  T h e  mapping ( t  , s) - 
@ . ( t  ,Q .(s,x)! is continuous as  a m a p  from R%RK i n t o  I(D.x). 

!I I I  N P 

P -P 0 P P  

P -P  0 

, x )  is i n  the interior of L (D,  \ \  t \ I  ). By the previous remark 
3 " P  X -P 

T 
0 N N  

T There r e m a i n s  P 0 

P 
The  set 

1 - p H N 
N 

T 
0 is convex, and is mapped into I ( 0 , ~ ) .  There fo re ,  the previous lemma is 

applicable,  and we conclude that y + y  in I i ( D , x ) .  T h i s  proves o u r  
P 

theorem. 

4. Applications -to Control  Sys tems 

W e  shall consider  s y s t e n x  of the f o r m  

= F(x(t), u(t)) d t  

defined on an  analytic manifold M. - T h e  functions - u belong to a class 

%?of "admissible  controls". W e  make the following assumpt ions  about 

W and the sys t em funct iong:  

(i) T h e  e lements  of W are piecewise continuous functions- defined 

i n  [Os- ) ,  having values  in a locally path connected s-eCS2. R C R - - H 

( R  is locally path connected if, for every w e f2 and e v e r y  neighborhood 

V of w ,  t he re  exists a neighborhood of w such tha t  U C V, and U - - -L 

n R is path connected). In addition, we a s s u m e  that  4V contains  
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- a l l  the piecewise constant functions with values in R , and that  eve ry  

element  of h a s  finite one-side l imi t s  in each  point of discont inui ty .  

4 2  is endowed with the topology of uniform convergence o n  compact  

intervals .  

( i i )  F:  M X R -+TM is jointly continuously different iable .  For 
d -  - - 

e a c h  u c r?, - F( .  , - u)  i s  a complete analyt ic  vector field on M. W e  k n o w  -- 

that  for each - x c - -  M ,  u c a, the different ia l  equation 

dx( t) 
_I__- = F(x(t) ,  u( t))  x( 0) = x, dt 

solution by T I  (x, u,  - ) ,  and we assume that TT (IC, _u,_t) is defined fo r  a l l  

F o r  the above defined control sys t em,  we  now state the basic 

controllabil i ty concepts.  W e  s a y  that y e - M is at ta inable  from 0 -  x e M  

a t  time - t ( t  2 0 ) ,  if t he re  exists - u c: 4Y such that  n(x, u, t) = y. For each  

x E M, we l e t  A(x, t) denote the set of all points attainable from - x at - -  - - -  
time t .  If 0 5 t < C D ,  we define A (x, t) = u A  (x, s) and A(x)  = u ,A 

t r O  .u - - - 
ss t 

(x , s ) .  W e  s a y  that  the s y s t e m  is controllable f r o m  x i f  A(x) = M, and  -- N 

that  it is - controllable i f  it is controllable from eve ry  x f: M. We s a y  

that  the s y s t e m  has  the accessibi l i ty  proper ty  f r o m  x if A(x) h a s  a non- 

empty in te r ior ,  and that  is h a s  the accessibi l i ty  property if i t  has the 

accessibi l i ty  proper ty  from eve ry  x Q M. 

k 

Final ly ,  we sha l l  s a y  that  the 

sys t em has  the s t rong  accessibi l i ty  property from x if A(x ,  t; h a s  a non- 

empty in te r ior  for some t > 0, and that  i t  has  the strong accessibi l i ty  

property i f  i t  has  the s t rong  accessibi l i ty  proper ty  from x for eve ry  

x c M. 
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F o r  w 6 52, let Xu = F( - ,u); f rom assiiniption ( i i )  it follows that 

X 

par t  of this a r t i c l e  w e  let D = {Xu : w € 9 ' ) .  

is a complete analytic vector field-on - M. Throughout the remaining w 

LEMMA 4.1. For each x 6 M , A ( x )  is contained in I ( D , x ) .  

The proof is identical to that of Lemma 2. 4,. and will,  therefore ,  

cv - -  

be omitted. 

Remark  4. 2, It is easy  to see that the control sys tem defined by 

res t r ic t ing  L F to -- I (D ,x )  - sa t i s f ies  the same assumptions a s  the original 

system. Since it c a n  be readily verified that the map  u - V(x,  u,  t) i s  

continuous a s  a m a p  f r o m e i n t o  M,  i t  follows that th i s  m a p  is also - 
continuous as a map from e into I ( D , x ) .  

W e  now want to obtain a resu l t  for A ( x ,  t) which is similar to that -- 4 

of Lemma 4. 1. It is h e r e  that the assumption about s1 will  be utilized. 

Let  , !be  the c l a s s  of piecewise constant R-valued functions defined on 

LO,=) .  Clear ly ,  9' is dense  in w .  Moreover ,  the local connectedness 

of G? implies that the condition of Remark 3. 8 is sat isf ied ( th i s  can be 

easily \- Yified, and we omit the proof). Thus, we can apply L e m m a  

3. 7 ,  with C =@and K =W, to obtain the following result: 

LEMMA 4. 3. Let  - -  x c M .  For each t z 0,  A(x , t )  C I i ( D , x ) .  

Proof. S incewconta ins  9, w e  have that L ( D , t )  C A(x , t ) .  Le t  
X 

G: 4# + I ( D , x )  be defined by G(u) = n(x ,u , t ) .  W e  have that G ( 9 )  = L 

( D ,  t )  and by Theorem 3.9,  G ( 9 )  C I o ( D , x ) ,  Now our coriclusion 

follows immediately f r o m  Lemma*3. 7,  and the proof is complete. 

X 
t 

The above l emmas  combined with the t heo rems  of the preceding 

section yield the following resul ts :  

THEOREM 4.4.  Let x M . Then A (x) C I(D, x). Moreover ,  

for every  T > 0, the in t e r io r  of A ( x , T )  relative to*I(D,x) is dense i n  

N - -  
N - 
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A ( x ,  T)(and,  in pa r t i cu la r ,  is non-empty). 
h) 

Proof .  The first p a r t  is jus t  the s ta tement  of Lemma 4. 1. T o  prove 

the second par t ,  we can a s s a m e  that I ( D , x )  = M ( i f  not, replace the 

original system by i t s  res t r ic t ion  to I ( D , x ) ,  cf. Remark  4. 2). Since 

L ( D ,  T )  is dense  in  A(x,  T ) ,  our  conclusion follows immediately from 

Theorem 3. 1. 

- x  N 

THEOREM 4. 5. Le t  x c M. Then, for each t BO, A(x, t )  C 

1 0 ( D , x )  and, moreove r ,  the in te r ior  of A(x ,  t) re la t ive to I ( D , x )  is 

- L 

t t 
0 

dense in  A ( x ,  t) (and,  i n  par t icu lar ,  i s  non-empty). 

Proof .  % The  first p a r t  is jus t  the s ta tement  of Lemma 4. 3. To  prove 

the second pa r t ,  we apply Lemma 3.7 to the function - G of Lemma 4. 3, 

and we get that  G is continuous as a map  into I (D,x) ;  therefore ,  

L ( D ,  t) is dense in  A(x ,  t) re lat ive to 10(D, x). 

immediately from T h e o r e m  3. 9, and the proof is complete. 

t 
0 

O u r  conclusion now follows 

- 
t 

X 

The following two controllability c r i t e r i a  follow immediately from 

the Theorems  4.4 and 4 .5 ,  and f r o m  Lemma 2. 1: , 

COROLLARY 4. 6. The  sys t em has the accessibi l i ty  propertv 

f r o m  - x i f  and only if d i M D ) ( x )  = d im M. In this c a s e  ry A(x, T)  has  ,a non- 

empty in t e r io r  for  eve ry  T > O .  

COROLLARY 4.7. The sys t em has the s t rong  accessibi l i ty  

property f r o m  - x i f  and only i f  So(D)(x)  = d i m  M. 

a non-empty in te r ior  f o r  eve ry  T > 0. 

In this c a s e  A(x ,T )  has 

The preceding r e su l t s  can be utilized to der ive  relationships 
, 

between accessibi l i ty  and s t rong accessibil i ty.  Even  though the la t te r  

property s e e m s  much s t ronge r  than the f o r m e r ,  we show that,  for a very  

large c l a s s  of manifolds (including the sphe res  Sn f o r  n > 1, and a l l  c o m -  

pact semis imple  Lie groups,  but not R) ,  it is i n  fact  implied by it. 
N 
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On the other hand for  a s t i l l  l a r g e r  c l a s s  of manifolds (including Rr) 

controlability (which trivially implies access ib i l i ty ) ,  is sufficient to 

guarantee strong accessibi l i ty  ( the  f ac t  that controllability implies  

that dim,F(D*)(x)  n t 1 for a l l  - x was  proved by Elliott  in  [5]). 

Consider a sys t em on a connected n-dimensional analytic 

N 

manifold M, - having the accessibi l i ty  property but not having the s t rong 

accessibi l i ty  property.  Le t  - D be  the family of associated vector fieids,  

By Corol la ry  4. 6, d i m  S ( D ) ( x )  = n for all x M, By Corol lary 3, 4 the 

number d im 3 (D)(x) is independent of - x, 
n o r  n -1  , Corol la ry  4. 7 implies that d im S (D)(x) = n - 1 for  a l l  

x F M. 

group generated by X(i. e . ,  for  eve ry  y M, the in tegra l  curve of X 

Since this  number is e i ther  0 

0 - - 
Choose a fixed X g D, and u s e  4 to denote the one -pa rame te r  t 

that  p a s s e s  through y at t = 0 is the curve  t - eiy)). 
F f r o m  the manifold SXR into 

Define a mapping 

by 
H 

One shows easily that  - Fis a local diffeomorphism -- onto M. 

Moreover ,  SXR is connected. 

the definition of a covering projection): 

In fact ,  we have (cf. [18], Ch. 2, for  
N 

LEMMA 4.8. The  map - F is a covering projection. 

Before we prove Lemma 4.8,  we show how the results mentioned 

above follow f r o m  it. 

THEOREM 4.9.  L e t  - M be a manifold whose universal  covering 

space  (cf.  [l8]) is compact. Then every  s y s t e m  h a v k g  the access ib i l i ty  

property has  the s t rong  accessibi l i ty  property,  

Proof. If the universal  covering space  of - M is compact,  then 

If it w e r e  possible to have every covering space of M - is compact. 
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a sys t em o n  M having the accessibi l i ty  property but not the s t rong  - 
access ib i l i t y  property,  we could define,  for such a s y s t e m ,  S and - F 

a s  above. It would follow that S X R  is compact,  which i s  c lear ly  a 

d 

N 

contradiction 

Remark.  If n > 1, the sphe re  S" is s imply connected (and compact) .  

The re fo re  Theorem 4. 9 applies.  A l s o ,  if - M is a connected conipact 

semis imple  L ie  group ( fo r  instance SO(n), if n > 2 ) ,  the universal  

covering group of - M is a l s o  compact  ( c f .  171, p, 123) and, t he re fo re ,  

Theorem 4. 9 applies in this case a s  well. 

THLOREM 4. 10. L e t  M be a manifold whose fundamental g roup - 
has  no elements  of infinite o rde r .  Then e v e r y  controllable s y s t e m  on 

- M has  the s t rong  accessibi l i ty  property.  

Proof.  A controllable system obviously has  the accessibi l i ty  

property.  A s s u m e  it does  not have the s t rong  accessibi l i ty  property.  

Define S and F - as  before. 

t he re  would exist s s '  

F(0 ,  so) = s There fo re  .r, ( S )  = S. Define H: SXR * S X R  by 

H( s ,  t) = ( m  T(~), t-T). 

is a homeomorphism. Moreover ,  if ( s ,  t) S X R  

W e  show that F L is one-to-one. Otherwise,  

( s t )  0' 0 T O  S a n d  a T f 0 such that  F(T,  si ) = ip 

0' T N cy 

Then - H is well  defined, because 8 ,(S) = S, and 

N 

There fo re  - H is a covering transforma-tion (cf, [18], Ch. 2), 

m 
Moreover ,  H has  infinite order ,  because  H (s, t) - - ( F , T ( S ) ,  t - n m ,  

so that Hm is not the identity m a p  if  m f 0. W e  know from [18] Ch, 2 

that  the group of covering t ransformat ions  of the  covering space  

( Z R ,  F) is isomorphic  to a subgroup of the fundamental group n of M. 
N 
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If v h a s  no  elements of infinite o r d e r ,  then this is a contradiction, 

Therefore  F mus t  be one-to-one. On the other hand, the points that 

a r e  attainable f rom x must  belong to S != ip (S)) for some nonnegative 

' t (cf. Theorem 4. 5). Therefore  the points in  S a r e  not attainable,  

i f  t >  0. Thus ,  the sys t em is not controllable,  and we have reached a 

0 t t 

- t  - 

contradiction. 
< 

Remark.  Theorem 4. 10 appl ies ,  i n  pa r t i cu la r ,  to any siinplv 

n 
connected manifold, such a s  R , 

N 

Proof  of Lemma 4.8 .  We mus t  show tha t  every  point of M has a 
- - 

neighborhood that is evenly covered by F. Let  m c M, Since F i s  a - 
local diffeomorphism onto, t he re  ex is t  s e S, t c R , E >  0 2nd a connected 

neighborhood - U of - s in  - S such that  F(s, t) = m and that the r e s t r i c t ion  of 

F to UX(t-e ,  t + e ) is a diffeomorphism onto an  open subse t  V of M. 

We c l a im that - V is evenly covered. 

7 

that U 

i f  0 < 17  - nl < 2 6 ,  7 e A ,  VE: A ,  then UT and U 

they a r e  not. Then  5 ( U  ) and $ ( U  a r e  not dis joint ,  fo r  any T .  Choose 

T such that both T t7 and T t q belong to  ( t - e ,  t t e ) .  - - - 'Tt7 1 

ry - -  

- - 
Let  A = { 7  : + 7 ( S )  = S 1. 

S -&  S is a diffeomorphism,  i t  follows 

We f i r s t  show that,  

F o r  each 

A ,  l e t  UT = (p 7(U). Since 6 
7 -  

is open in  S and connected f o r  each 7 c A .  - r 

a r e  disjoint. Assume  
rl 

T 7  T r l  - 
Let  u = ( u  ) = 

( u  ) be a common element ,  where  u and u2 belong to U. 

2 '  

Then the - ' T t q  2 1 

points (u lT  t 7 )  and ( u  

striction of F to th i s  set iri  one-to-one, it follows that 7 = n, which is 

a contradiction. For each 7 c A ,  l e t  W = U X ( t - 7 0 ~  t-?+g), W e  sha l l  

conclude our  proof that - V is evenly covered by showing: 

T t q) belong to UX( t - c , t t g ) .  Since the re- 

- 
7 7 
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(a) the s e t s  JY are open, connected and pa i rwise  disjoint, 
7 

(b)  

I C )  

for e a c h  7 8 A ,  - F maps ?V7 diffeomorphically onto V ,  - and 

the i d e r s e  image of V under F is the unio? cf the s e t s  W 

If 7 and n belong to  

+ 
7' - d I 

The first two asse r t ions  of (a) a r e  obvious. 

A ,  a n d 7 # q ,  t h e n e i t h e r 1 7 - q )  < ~ C C I T ~ ~ - ~ I ? L E . .  I n t h e f i r s t  

c a s e  W7 and W mus t  be disjoint,  because U and U a r e  disjoint. 

In the second c a s e ,  W i  and W 

( t - 7 - g ,  t -7 i -c )  and ( t - p c , t - q t  c )  cannot have a point i n  common. 

rl 7 r\ 
a r e  a l s o  disjoit,t, because  the i n t e r v a l s  

r\ 

To  prove (b) ,  take 7 6 A .  Define G : U X (t-E, t t 4 + W7 by 

G(u,,?) = ( 5 7(u), 0 - 7 ) .  

t t 8 )  onto W7. 

@ (u) = F(u,,). 

ph ism onto V ,  the same mus t  be t rue  f o r  the r e s t r i c t ion  of F to W 

Finally,  we prove (c ) .  

Clear ly ,  G i s  a d i f feomorphism f r o m  UX(t-E, 

Moreover  if u c U ,  t - e<,, < t t c , thenF(G(u ,o) )=@ 
0-7 -7 

Since the res t r ic t ion  of d F to UX(t -c ,  t t s )  is a diffeomor-- 

( 6  ( u ) )  = 

0 

- 7 '  - 
Let  u 8 S, e c R be such that F ( u , 3 )  e - V. 

N 

1 

r h e n  the re  exist u' E U, 0 e ( t - c  , t t  c )  such that F ( u ' , J )  = F ( u ,  a) .  

There fo re  u = @ , 
belongs to - A ,  and that  u e U T  , 

it fol!ows that t - 7 - E < g  < t - 7 t C ,  T h e r e f o r e  ( u ,  a )  e W , 

Ju ' ) .  T h i s  implies ,  in par t icu lar ,  that  T = g ' - 0 

Moreover ,  s ince  t - c < 0 I < t t c: , 
u -  

7 

The proof Lemma 4. 8 is now complete. 

-. 5. Examples.  

Example 5 .  1. Let M = R n,  R = Rm, and let F : M X  R +TM - 
*w N 

be defined by F(x, u) = A x  t Bu, where - A and - are, respect ively,  

n X n and n X m real ma t r i ces .  

L e t  b. denote the - i - t h  column of - B. 

X(D)(x) contains the vectors:  

W e  kave that D = { A ( #  ) t Bii : u g R" ), 
cy - - - -  

Then,  a s  shown by Lobry [16], 
1 
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n- 1 A x + b . ,  + A b  .,... , f A  b. i =  1, . . .  
1 -  1 1 - 

It is not difficult to see that the above set of vec to r s  fornls  a 

sys t em of genera tors  for  ~ ( D ) ( x ) .  - -  
A ( 0 ,  t) has  a non-emgty in te r ior  i n  R 

+A 

e m p t y  in te r ior  i n  R CL 

F r o m  Corol la ry  4. 6 we &e: that 

if and only if [ + b . ,  + A b . ,  . , , , n 
cu h, N 1 -  1 - 

n- 1 b. ,  i = 1 , 2 , .  . . , m) has  r a n k  n ;  eqr;ivalently. A ( 0 ,  t) has  a non- - 1 - N  - 
n i f  and only if r ank  [B,AB, . . . , A n - l B ]  = n. 

Since, obviously, S {D)(O) =$(D)(O), we  conc1u.Jp that  A ( 0 ,  t) O N  h, cy 

h a s  a non-empty in te r ior  whenever A(0, t) does. 

n along with the f ac t  that  A(0 ,  t) and 4 0 ,  t! c r :  !inear subspaces of R , 

imply that, if rank [B,AB,.  . . , A n - ' B ]  = n, then for each  t >  0 

A(0, t )  = A(0, t) =A(O) = Rn (Kalman [lz!). 

accessibi l i ty  proper ty  is equivalent to contrcllability. T h i s  is, of 

The above s ta tements ,  
N N  

N N C Y  ry 

Thus ,  in th i s  example, the 
ru C Y Y  w r y  N 

cour se ,  not t r u e  in general .  

n Example5 .2 .  L ~ ~ M = R  , R = { ~ € R ~ :  0 s u . 5 1 .  i = l ,  . . . ,  m), 
H N 1 

0'. ' 
and l e i  F(x, u) = ( A O  t c'" A .u.)x for a l l  (x,  u) e R"X 0, where  A 

A 

- -  .v i= l  i 1 

are  nXn real matrices. Then  D is the set of a l l  vector fields X 
U - m 

where  X (x) = (Ao t 6" u.A.) x. The  set M" of all f i n  real matrices 
U 1=1 1 1 N 

is a Lie a lgebra ,  with the bracket defined by [P,QJ = PQ - QP. T o  
each matrix d P t h e r e  cor responds  a vec to r  field 0 0  V(P) defined by V(P)(x; = 

Px. Ik is easy  to check that V([P,Q]) = [V( p),V(Q)]. Using th i s  fact, 

the space5 $(D)(x) and 3 (D)(x) can  be readi ly  computed: 0 

~ ( D ) ( X )  = !Px : P eL], 
N 

and 

.9b(D)(x) = {Px: P E: L] 
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, A  , and L is the ideal  of 

W e  remark that for th i r  example the theory 

- 0'"' m 
where L is the Lie  a lgebra  spanned b y A  

L s p a n n e d b y A  l , . . . , A  
rv m' 

Qf Section 4 is valid e v e n  i f a i s  the set of 311 bounded and m e a s u r a b l e  

N 

_. 

St -valued functions_. T h i s  is Y O  because the only proper t ies  of the - 
class of admiss ib le  controls  that were  uti l izeJ in  Section 4 were:  

(a) that the c l a s s  of piecewise constant controls  is dense  in  a ( i n  the 

topology of uniform convergence),  and (b) that, if {u a r e  e l emen t s  of 
-2 

4?X that converge uniformly to u ,  then n(u , x ,  t )  converges  to T T ( u , x , ~ ,  
d - -  - -  e 

OL 
In  o u r  example,  both (a) and (b) r ema in  valid i f  che topology of . 

uniform convergence is replaced by thal of weak convergence. T h i s  - 
is e a s y  to ver i fy ,  and we sha l l  l o t  do it h e r e  (see Kugera  [14]). 

Moreover ,  the set of 0-va lued  measu rab le  fuuctions defined i n  [O, T] - 
is wzakly compact. It follows that the sets A ( x ,  T ) ,  A(x,  T) a re  com- 

H 

pact fc: each  - T > 0. Denote  t he i r  i n t e r i o r s  (relative to I(D,x) and 

T 
Io (3, x) 

.\(x, T )  is the c losu re  of  In+ 4(x,  T ) ,  and tha t  A ( x ,  T) is the c losu re  of 

respectively) by Int A ( x ,  T) ,  Int A(x, T). It follows that  
Ly 

ry ry 

Int A(x ,T) .  T h e r e f o r e ,  o u r  r e s u l t s  contain those of Kugera  ( in  th i s  

connection, see also Sussmann [2 I]) ,  

Remark. The resul t  of the preceding example  is a pa r t i cu la r  

case of a more- genera l  situation. Let G be a Lie group, and let M - - 
be a n  analytic manifold on which G - a c t s  analytically to the left. 

Then  the re  is a homomorphism 1 f rom the Lie a lgebra  of G into - 
V(M),  defined by - -  

d 
x(X)(m: == (exp ( W  m), 

the der ivat ive being evaluated a t  t = 0. If Xo,. . . , X belong to k - 
the Lie a lgebra  oc  G , we can  consider  the control  problem - 
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k 
= X' (x)  t.c U.X'.(X), dx 

d t  0 1=1 1 1 

where  X! = X(Xi). 

n 
M = R .  

Example  5. 2 r e s u l t s  by letting G = GL(n, R )  and 
1 cv 

N - 
Example 5. 3. T h i s  example  shows that the  analyticity assumpt ions  

are essential. Cons ider  the following two s y s t e m s  defined in the ( x , ~ )  - 

and 

Let fl- f -1, gl- - 0, and gz(x, y, u) = q ( x )  where  cp is a C" function 

which vanishes  for -a< - x < 1, and which is equal to 1 for - x > 2. It is 

clear that for (S1) the set A((0,O)) is the  half l ine {(x, y) : y = 0 ,  x L 01 

while, for ( S 2 ) ,  A((0,O)) has a non-empty inter ior .  

a re  identical  in  a neighborhood of ( 0 , O ) .  

2- 

ry 

However ,  both s y s t e m s  
N 
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